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Nanophotonics for 
bioapplications

Nanophotonics 
for clean energy 

and sustainability

Nanomaterials 
assembly and control

• Plasmonic-based biosensing
• Optical control of analyte motion
• Nanomedicine & theranostics

• Biomimetic light harvesting
• Plasmo-catalysis
• Sustainable fabrication methods

• Self-assembly
• Specific localization
• Control of nanoparticle motion



Why colloidal nanomaterials?
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Introduction

Nano-bio 
hybrids

Superclusters

Self-assembly

Applications:
• Renewable energy
• Environment
• Electronics
• Biomedical

• Textiles
• Industrial
• Food
• Agriculture
• Materials for sport

Fabrication of nanomaterials
Bottom-up

Top-down

• Material systems / sizes
• Scalability of fabrication
• Cost of fabrication & precursors
• Reproducibility
• Pre-determined localization
• Compatibility with pre-existing 

structures

Considerations

“Synthesis and Functionalization of Nanomaterials”, N. Kumar, S. S. Ray, Springer

Localization
2-step EBL

Template 
dissolution

Active control
Brownian 

ratchets

Conclusions



Material immobilization toolbox
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+

Delivery Fixation

Long-range attractive forces

Other driving forces 
• Electrostatic
• (Di-)electrophoretic
• Brownian motion
• Gravity
• Optical
• Convective
• Capillary

Intermolecular forces

cscsdashaicechem.weebly.com

Intramolecular forces

Typically more than type contributes

Kuby Immunology. Ed. J.A. Owen, J. Punt, S.A. Stranford. 
7th edition, W. H. Freeman and company, New York (2013) 

Malaquin, Langmuir 23, 11513 (2007)
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Outline
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Introduction
 Control of nanomaterials for applications

Self-assembled systems
 Nano-bio hybrids
 Plasmonic superclusters

Deterministic localization of NPs
 QDs coupling to plasmonic structures
 Large area localization of metallic NPs

Active control of NPs
 Exploiting Brownian motion for long range transport

Conclusions
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Self-assembly
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SAM formation

Antigen-antibody 
binding

Layer-by-layer assembly

https://www.intechopen.com/books/carbohydrate/self-assembled-
monolayers-of-carbohydrate-derivatives-on-gold-surfaces

https://www.cusabio.com/c-21045.html

DOI: 10.1021/acs.chemrev.6b00627
Chem. Rev. 2016, 116, 14828−14867
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Self-assembly of nano-bio hybrids
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Assembly of QDs on Purple 
Membranes containing bR protein

Assembly of QDs 
with bacterial 
reaction centres

Biomaterials:
• Typically have many amino 

acids
• In solutions, some of end 

groups can be charged
• In many cases, electrostatic 

self-assembly with colloidal 
NPs is possible
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NanoLetters 10, 2640 (2010) 



QDs as artificial antenna for bacteriorhodopsin protein
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Halobacteria

Purple Membrane
(2D crystal of PM)

Bacteriorhodopsin protein
(light-activated proton pump)Membrane protein with:

• Photoelectric properties
• Photochromic properties
• Charge transport properties

Performance optimised by evolution:
• High photo- chemical and thermal stability
• High fatigue resistance

Not able to deal with UV-photons:
• Can destroy light-absorbing molecule
• Utilizes only 0.1-0.5% of solar light

Adapted from Birge et al. J. Phys. Chem. B 103, 10746 (1999)

Use QDs as artificial down-
converting LH antenna
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QDs as artificial antenna for bacteriorhodopsin protein
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Typical, high density6 nm hydrodynamic radius QDsbR membrane

Electrostatic self-assembly of QDs on Purple and White Membranes
Introduction

Nano-bio 
hybrids

Superclusters

Self-assembly

Localization
2-step EBL

Template 
dissolution

Active control
Brownian 

ratchets

Conclusions



QDs as artificial antenna for bacteriorhodopsin protein
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Purple 
Membranes

White 
Membranes

Energy transfer in QD-PM complexes
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QDs as artificial antenna for bacteriorhodopsin protein
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bR proton pumping 
efficiency

Nonlinear refractive index

A. Rakovich et al., NanoLetters 10, 2640 (2010) A. Rakovich et al., ACS Nano 7, 2154-2160 (2013)
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Self-assembly of metallic superclusters
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NPs in 
solution

DCE

centrifugation

Concentrated 
NP solution

DCE

Supercluster 
emulsion in DCE

Take-off water

sonication

Based on hydrophobic effect

NanoLetters 10, 2721 (2010)

A. Lauri et al. ACS Photonics 4, 2070-2077 (2017)
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Properties of metallic superclusters

14V. A. Turek et al. ACS Photonics 3, 35-42 (2016)

http://www.cytodiagnostics.com

Single metallic 
nanoparticles

Superclusters of metallic nanoparticles
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Experimental verification of collective modes
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Raman: modal map

TEM: cluster size

V. A. Turek et al. ACS Photonics 3, 35-42 (2016); A. Lauri et al. ACS Photonics 4, 2070-2077 (2017)

4-MBA self-assembled onto Au NPs 
prior to supercluster formation

Varying excitation 
wavelengths 
D = 0.7 µm:

Varying supercluster diameter
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Sensing with metallic superclusters
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𝒉𝒉𝝂𝝂 𝒉𝒉(𝝂𝝂 ±  𝚫𝚫𝝂𝝂)

Varied pH of solvent

A. Lauri et al. ACS Photonics 4, 2070-2077 (2017)

causing de-/re-protonation of 
carboxylic acid group on the 
4-MBA molecule
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Selective localization for as-designed fabrication
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Tendency towards interdisciplinary science
• Exploit properties of different materials

Drive for device minimisation & integration
• Avoid cross-talk of different components
• Nanoscale control of materials

Independent design of components
• Time-efficiency
• Collaborative efforts

Reproducibility of performance
• Chemo- & photo- stability of components
• Reproducible characteristics

A – film deposition B – partial coverage C – selective localization
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Selective localization methods
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D. S. Ginger et al.
Ang Chem Int Ed 43, 30-45 (2004)

Dip-pen lithography

Light-activated molecular 
immobilization (LAMI)-

based approach

C.M. Galloway et al.
NanoLetters 13, 4299 (2013)
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Deterministic localization methods
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MACE-ID

Cut and Paste

Puchner, NanoLetters 8, 3692-3695 (2008)
Jacobs, Chem. Sci.  5, 1680 (2014)

Zhou, Nano Lett. 15, 7458-7466 (2015)

Photopolymerization

W. Slingenbergh, ACS Nano 6, 9214 (2012)
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2-step EBL method
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Step 1: fabrication of nanoantenna

Step 2: selective localisation of NPs

For localization of QDs in regions of interest near pre-existing structures

QD attachment step

SAM formation:
• Alkane-thiols and derivatives (e.g. 1-

amino undecanethiol) for metals, 
some semiconductors

• Ethoxysilanes and derivatives (e.g. 
APTES) for oxygen- or silicon 
terminated surfaces

QD conjugation to SAMs
• Covalent conjugation, e.g. via EDC-

coupling reaction
• Antigen-antibody linkage
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Application of the 2-step EBL method
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For characterization of SOI gap plasmon waveguides

NanoLett 16, 1410-1414 (2016)

via cut-back 
method
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Cut-back method:
 Requires many sacrificial structures
 Measures propagation length
 Does not reveal mode location

Use selectively deposited SQDs!



Application of the 2-step EBL method

22M.Nielsen et al. NanoLett 16, 1410-1414 (2016)

QDs’ TPE mapping Characterization of a single sacrificial 
structure:
• Direct measurement of 

propagation length from TPE data
• Direct confirmation of “nano-

squeezing” of light

For characterization of SOI gap plasmon waveguides
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Application of the 2-step EBL method
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For deterministic control of radiative properties of QDs via exciton-plasmon coupling

Nature Comm. 5, 4427(2014)

Plasmonic nanoantennas’ performance depends on:
• Antenna shape & size
• Material from which it is made
• Dimension of gaps (if present)

Colloidal QDs:
• Distribution of sizes (=𝜆𝜆𝑒𝑒𝑒𝑒) in a sample
• Blinking behaviour on a few/single QD level
• Blue-shifts and shortening of lifetime at high 

excitation intensities

Acc. Chem. Res. 32, 407-414 (1999)
ChemPhysChem 3, 871-879 (2002)
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Application of the 2-step EBL method
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For deterministic control of radiative properties of QDs via exciton-plasmon coupling

PRC

QD ring

Selectively deposited colloidal QDs 
inside plasmonic ring cavities

A. Rakovich et al. ACS Nano 9, 2648-2658 (2015)
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Application of the 2-step EBL method
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For deterministic control of radiative properties of QDs via exciton-plasmon coupling

A. Rakovich et al. ACS Nano 9, 2648-2658 (2015)

QD-PRC coupling
• Varied QD-PRC separation by increasing 

radius of QD ring
• Dimensions of PRC kept constant 

(D440t60)
• Strong change in radiative rates
• Good agreement with FDTD calculations
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Going big!
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Large-area printing & deposition techniques

Linhan Lin et al. Materials Today 28, 49-62 (2019) 
Julian Gargiulo et al. NanoLetters 16, 1224-1229 (2016) 

Optical printing of metallic NPs

L. Malaquin et al., Langmuir 23, 11513 (2007)

Capillary and convective 
assembly on pre-patterned 
substrates
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Large-area immobilization of Au NPs arrays
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In collaboration with LMU, ICL, KAIST, SUST

J.B. Lee et al., ACS Nano 2020, 14, 17693

CAPA (Capillary assisted particle assembly) + Stamping + Template-dissolution Introduction
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Large-area immobilization of Au NPs arrays
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Printing accuracy and yield
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In collaboration with LMU, ICL, KAIST, SUST
J.B. Lee et al., ACS Nano 2020, 14, 17693



Large-area immobilization of Au NPs arrays

29

Printing on different substrates

• Assembly conditions depend on NP and substrate type
• Works for any substrate not soluble in acetone
• Can be used with pre-existing structures

Exp. FDTD

Hot-electron detection
via an introduction of a tunnelling junction
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J.B. Lee et al., ACS Nano 2020, 14, 17693



Active control of colloidal nanoparticles
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In aqueous environments

Active control can enable
 Particle sorting
 Temporary/permanent concentration of samples
 Delivery of test materials to sensing areas

Allowing
 Lower LODs in sensing schemes
 In-situ measurements ranging from on single-

particle level to ensemble level on same sample

Short 
range

<100 nm

Medium range
few µms

Long range
>mm

TRAPPING

DIFFUSION
CONTROL

Various forces can be utilized
 Have different action ranges
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Active control of colloidal nanoparticles
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Short 
range

<100 nm

Medium range
few µms

Long range
>mm

TRAPPING

DIFFUSION
CONTROL

Optical trapping

Electrophoresis, 32 2307 (2011)

(Usually) short range

Dielectrophoresis
Medium-to-long range
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Control of nanoparticle motion in solution using SLMs
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Science, 296 (5570), 1101 –1103 (2002)

doi.org/10.1002/adfm.201706272

J. Phys. Chem. Lett. 2013, 4, 17, 2937–2942

NanoLetters 11, 2971-6 (2014)
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Active control of colloidal nanoparticles
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In aqueous environments

Active control can enable
 Particle sorting
 Temporary/permanent concentration of samples
 Delivery of test materials to sensing areas

Allowing
 Lower LODs in sensing schemes
 In-situ measurements ranging from on single-

particle level to ensemble level on same sample

Short 
range

<100 nm

Medium range
few µms

Long range
>mm

TRAPPING

DIFFUSION
CONTROL

Various forces can be utilized
 Have different action ranges
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Brownian motion of particles in solutions
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Brownian motion
 Stochastic process resulting in random motion
 Mean Square displacement for an ensemble:

Particle diffusion in presence of a potential
 Additional forces are exerted on particles
 Brownian motion “adds” thermal noise

𝑥𝑥𝑡𝑡 − 𝑥𝑥0 2 = 2𝐷𝐷𝐷𝐷

𝐷𝐷 =
𝑘𝑘𝐵𝐵𝑇𝑇
𝛾𝛾

,

where 𝐷𝐷 is the diffusion coefficient:

𝛾𝛾 = 6𝜋𝜋𝜋𝜋𝑎𝑎

Can exploit this noise for long range transport!

Particle motion in an optical trap

Eur. Phys. J. Plus 135, 949 (2020)
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Rectification of Brownian motion
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𝑅𝑅𝐵𝐵
𝐿𝐿

𝜏𝜏F = (𝐿𝐿−𝑅𝑅𝐵𝐵)2

2𝐷𝐷
𝜏𝜏B = 𝑅𝑅𝐵𝐵

2

2𝐷𝐷

Optimum time to keep the potential off:
< 𝜏𝜏𝑜𝑜𝑜𝑜𝑜𝑜 <

Through application of period & asymmetric potential

Can use any type of potential 
as long as it is switchable In preparation
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Plasmonic Brownian ratchets
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Advantages
 Easily designed / fabricated
 Asymmetries easy to implement
 Reduced power requirements
 Simple implementation

Ratchet design
 Strong resonance at target 𝜆𝜆
 Asymmetric potential profile 

Phys. Rev. B 88, 201401 
(2013)

𝜃𝜃

In preparation
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98
0 
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chopper plate
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se

r

NP solution
ratchet on 
substrate objective

SP800 filter

sCMOS

Experimental implementation of plasmonic Brownian ratchets
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 Chopped 980 nm CW excitation
 Max power used 2.5 kW/cm2

 Chopping: 50/50 duty cycle
 Adjustable frequency
 Aqueous solutions of various NPs

Brownian 
motion

Ratchetting

Polystyrene (40 nm) Polystyrene (200 nm) PTB7 (180 nm)
𝑣𝑣𝑥𝑥 0.14 μm/s 0.12 μm/s 0.15 μm/s

𝑣𝑣𝑦𝑦 2.37 μm/s 1.55 μm/s 1.84 μm/s

𝑣𝑣𝑥𝑥 = 0.12 𝜇𝜇𝜇𝜇/𝑠𝑠𝑣𝑣𝑥𝑥 ≈ 𝑣𝑣𝑥𝑥 ≈ 0 𝜇𝜇𝜇𝜇/𝑠𝑠

In preparation
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Experimental implementation of plasmonic Brownian ratchets
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Polystyrene spheres, 40 nm diameter

Brownian motion Ratchetting

Other sizes/materials

10      8.3    7.1      6.3    5.56     5.0     4.6     4.2      3.9
𝜏𝜏𝑂𝑂𝑂𝑂𝑂𝑂  (ms)

Theoretical 
range

PS
 s

ph
er

es
, 2

00
 n

m
PT

B7
 C

PN
s,

 1
80

 n
m

In preparation
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Comparison to other optically-driven Brownian ratchets
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Average speed = 1 µm/s
Coupled power = 100 µW/µm2 = 108 W/m2 

Analyte = ⌀520 nm polystyrene spheres

Our plasmonic ratchets

Average speed ~ 2.5 µm/s
Incident power ~2 kW/cm2 = 0.2 W/m2 

Analytes = ⌀40-200 nm polymer spheres

Optical ratchets

In preparation
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Conclusions
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